Artin-Nagata Properties, Minimal Multiplicities, and Depth of Fiber Cones

Jonathan Montaño

Reference

Artin-Nagata properties, minimal multiplicities, and depth of fiber cones, Jonathan Montaño, to appear in Journal of Algebra, arXiv:1408.5541.

Setting

- ▶ (R, m, k) Cohen-Macaulay (CM), $|k| = \infty$, dim(R) = d > 0.
- ▶ I an R-ideal of height h > 0.
- ▶ $J \subseteq I$ is a minimal reduction of I, i.e., $I^{n+1} = JI^n$ for some $n \in \mathbb{N}$ and J is minimal with respect to inclusion.
- ▶ $r(I) = \min\{n \mid I^{n+1} = JI^n, \text{ for some minimal reduction } J\}$, the reduction number of I.

Blowup algebras

- $ightharpoonup \mathcal{R}(I) = \bigoplus_{n \in \mathbb{N}} I^n$, the Rees algebra of I.
- $G(I) = \bigoplus_{n \in I} I^n / I^{n+1}$, the associated graded algebra of I.
- $\mathcal{F}(I) = \bigoplus_{n \geq 0} I^n / \mathfrak{m} I^n, \text{ the fiber cone of } I.$

Dimension:

- $\operatorname{Join} \mathcal{R}(I) = d + 1$
- ▶ dim $\mathcal{G}(I) = d$.
- $\blacktriangleright \ell := \dim \mathcal{F}(I)$, the analytic spread of I.

How do the depths of the blowup algebras relate?

- $ightharpoonup \mathcal{R}(I)$ is CM $\Rightarrow \mathcal{G}(I)$ is CM. (Huneke)
- ▶ $\mathcal{R}(I)$ is CM $\Leftrightarrow \mathcal{G}(I)$ is CM and $a(\mathcal{G}(I)) < 0$. (Ikeda-Trung)
- ▶ If R is regular, R(I) is CM $\Leftrightarrow G(I)$ is CM. (Lipman)
- ▶ If I is \mathfrak{m} -primary, $\mathcal{R}(I)$ is CM $\Leftrightarrow \mathcal{G}(I)$ is CM and r(I) < d. (Goto-Shimoda)
- ▶ G(I) is not CM \Rightarrow depth R(I) = depth G(I) + 1 (Huckaba-Marly) However, in general:
- $ightharpoonup \mathcal{F}(I)$ is CM $\Rightarrow \mathcal{G}(I)$ is CM.
- $\mathcal{F}(I)$ is CM $\notin \mathcal{R}(I)$ is CM.

Hilbert-Samuel multiplicity

Let / be m-primary,

$$e(I) = (d-1)! \lim_{n \to \infty} \frac{\lambda(I^n/I^{n+1})}{n^{d-1}}$$

is the Hilbert-Samuel multiplicity of *I*.

Minimal multiplicity (m-primary case)

Notions of minimal multiplicity provide stronger relations between the depths blowup algebras:

Let I be \mathfrak{m} -primary. From the following diagram

we obtain

$$e(I) \geqslant \mu(I) - d + \lambda(R/I) \tag{1}$$

with equality iff Im = Jm.

▶ *I* is of Goto-minimal multiplicity ("=" in (1)): $\mathcal{R}(I)$ is CM $\Leftrightarrow \mathcal{G}(I)$ is CM $\Leftrightarrow r(I) \leqslant 1$. (Goto)

Question: How can we define a notion of minimal multiplicity for non \mathfrak{m} -primary ideals?

j-multiplicity

Let I be any ideal,

$$j(I) = (d-1)! \lim_{n \to \infty} \frac{\lambda \left(H_{\mathfrak{m}}^{0}(I^{n}/I^{n+1}) \right)}{n^{d-1}}$$

is the *j*-multiplicity (Achilles-Manaresi).

With the j-multiplicity several results for \mathfrak{m} -primary ideals have been extended to arbitrary ideals using the j-multiplicity instead of the Hilbert-Samuel multiplicity. For example:

- ► Teissier's volume interpretation of multiplicities of monomial ideals. (Jeffries-M)
- ► Rees criterion of integral dependence. (Flenner-Manaresi)
- Relation with depths of blowup algebras. (Polini-Xie, Mantero-Xie, M)

Artin-Nagata properties

Recall $\ell = \ell(I)$ and h = ht(I).

Assumption (*)

The following ideals satisfy the Artin-Nagata properties $AN_{\ell-2}$ and G_{ℓ} :

- ▶ Ideals with $\ell = h$.
- ▶ Ideals with $\ell = h + 1$ that are generically a complete intersection.
- ▶ Ideals with $\mu(I) \leq h + 2$.
- ▶ Perfect height 2 and perfect Gorenstein height 3 ideals that are a complete intersection locally in Spec $R \setminus \{\mathfrak{m}\}$.

Minimal multiplicity (general case)

Theorem (Achilles-Manaresi, Xie)

Let x_1, \ldots, x_{d-1} be d-1 general elements in I and

 $R := R/(x_1, \ldots, x_{d-1}) : I^{\infty}$. Then dim $\widetilde{R} \leq 1$, the ideal $\widetilde{I} := I\widetilde{R}$ is $\widetilde{\mathfrak{m}}$ -primary, and

$$j(I) = e(\widetilde{I})$$

From this theorem and (1) we obtain:

$$j(I) \geqslant \lambda(\widetilde{R}/\widetilde{I}) + \mu(\widetilde{I}) - 1.$$
 (2)

Proposition (M)

Under (*), I is of Goto-minimal j-multiplicity ("=" in (2)) \Leftrightarrow Im = Jm, for one (hence every) J.

Results

Theorem 1: (M)

Under (*). Assume Im = Jm, consider the following statements:

(i) $\mathcal{R}(I)$ is CM,

(ii) G(I) is CM,

(iii) $\mathcal{F}(I)$ is CM and $a(\mathcal{F}(I)) \leqslant -h+1$,

(iv) $r(I) \leqslant \ell - h + 1$.

Then (i) \Leftrightarrow (ii) \Rightarrow (iii) \Rightarrow (iv).

If in addition depth $R/I^j \geqslant d-h-j+1$ for every $1 \leqslant j \leqslant \ell-h+1$, then all the statements are equivalent.

Theorem 2: (M)

Under (*). Assume $J \cap I^n \mathfrak{m} = JI^{n-1}\mathfrak{m}$ for every $2 \le n \le r(I)$, then *TFAE*:

(i) $\mathcal{F}(I)$ is CM.

(ii) depth $\mathcal{G}(I) \geqslant \ell - 1$.

(iii) depth $\mathcal{R}(I) \geqslant \ell$.

Examples

1) The monomial ideals

$$I = (x_1^2, x_1 x_2, \dots, x_1 x_d, x_2^2, x_2 x_3, \dots, x_2 x_n)$$

are strongly stable ideals of height 2 satisfying (\star). I is of Goto-minimal j-multiplicity then the algebras $\mathcal{R}(I)$, $\mathcal{G}(I)$, and $\mathcal{F}(I)$ are CM.

2) Let R = k[[x, y, z, w]] and

$$M = \begin{pmatrix} x & y & z & w \\ w & x & y & z \end{pmatrix}.$$

The ideal $I = I_2(M)$ has height 3, satisfies (*), $r(I) \le 2$, and R/I is CM. I is of Goto-minimal j-multiplicity then the algebras $\mathcal{R}(I)$, $\mathcal{G}(I)$, and $\mathcal{F}(I)$ are CM.